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THE EFFECT OF GEOf%ETRIC SHAPE ON TkO-DI14ENS10NAL FINIJL ELEMENTS

by

M. A. Cook

ABSTRACT

Three quadrilateral elements are defined. These are an eight-nodal-pcil!t

serendipity element (QUADBS), a nine-nodal-point serendipity element (OUAL19S),

and a Pine-nodal-point quadrilateral ~lement composed of two Six-noaal-point

triangular elements (QUAD9t). The effect that the geometric shape of the

element ha~ cm the approximation function of edch element is uiscu~sec. Tv.(

bean)problems demonstrate that wller’the shape of the elements become~ s~~h~(l.

th~ (/[l~u9t ~lHWT”lt SiClhlflL(Ir,tly iIT~rW~S ~tl~LdlCU]dt@u r~\l#ltS. FirlUlly, ~

recommendation is made fr)rthe UIIALW:, and UllAD9t tijbe used !.byetllerfcjrtt,i

m(I\lcffi(.it-rlt.371(1 dc(h~att, rk’’l:,’t’.



He explained

element, the

This element

that others had also seen this effect and suggested u~lng another

six-nodal-point linear strain triangle (subparametric element).

has straight sides and will not accurately model problems with

curved boundaries. L. N, Gifford [5] showed in 1979 that this same loss of

accuracy occurs for twelve-nodal-point serendipity elenmts, and J. Backlund

(in 1978) showed how reduced integration improves the accuracy of skewea

elements [6].

I will shcw that a marked improverrwrltis nladc in ttleserendipity quadri-

lateral two-dimensional isoparametric ele(lent (QUAlJ5s)by adding a center nuddl

point. HC)hpVer, everlwith a very careful placement of the center noudl p~lirlt,

this elenlent is affected by the geometric shape of the element. C. M. Stclrw

of SarlcliaIiatior,dlLalluratcmies, Albuquerque, suggesteu Ll,i$elenlent,*

I will also present a nine-nodal-point quadrilateral two-uinlerlsionalelc-

nl<rlttll+tconsists of tw~lsix-ncmal-poirlt tridrlguldr isclparamttric klenllflts

(iJllAD9t ). Whorl t~lcsidej of thesb triangular elemerlts are straiqllt, thvy wt

eclliival~,~lt.to l)t[’c:lrnllr)tf$sugg~’stc(lI)yStricklallo, et al. [4].

llr~’t ~,lan~’..str~$!,bvam problun’s ar(’usPd to tIvalIJ~tttilt(.lh[:~?s,[:IL!’L!L,,

arlt~ol:l.[1~~1i,l(r’fflt~,,Ii,[)first f)rol)ltqtlis d l(lrIUltU(]lfItIl 1111(]1’ k,llt, ((IfII,t(I!l

stroinm All thrw’ vlfw’f’nt’, SCIIV(I this prohl[w ~xa~tly uf.irlqttlr~’~(’lt’r:tr,t\

fll~ l,rtll r-(’ltllf (lll!r’l” (1! ’(1 !,1 (wm(’(l-shaptldt’1(’1ll(’tlt~,..Ttlis ~1)”(11111111~Il”(IvII(; tllill 11 I

hltt’

(:llt”,ll

Wt’rl’

tll(

* C, M, Stone, Sarlcli~Natiurlal Laboraturieso Albuquerque’, pmsonal umrmlllil,l-
tion, August 1979.



displacements were nearly identical. The second

with a shear load, was used by Strickland, et al

solve this problem very accurately using three e’

problem, a cantile~ered beam

[4]. All three elements

ements when the quaarilaterais

ape rectangular; however, when the elements are skeweo, the errors are 56% for

tte maximum displacement for QUADEIS, ?7% for QUAD9S, and 4?Jfor QUAD9t. The

third problem Is a circular beam problem, Again, all three elements solve

this problem accurately using six elements when the quadrilaterals are unifornl

circular segments. When tileseeleme’?ts are skewed, the errors in the maximuu

radial dis~lacement are 23!.for OIIAMS, 15. for C)LM[19S,and Y, for QlJAD9t.

1 conducted this study for two reasons, First, in nonlinear analyse’, ti,~t

use a deforminq configuration technique (updated Lagrangi~rl In ADINA), th~’

finite elemel~tsmay becorrw skpwed and c~lplicate the sclutic)ntechrlique.

Seccmcl,three’-dimensi(lrlalprcdllems with complicated cyomet~ies are linliteflin

Thp n~~mll(’rof elerwnts ttlatmay lx’used for solutiorl In a reasona!’lc arriftif~tut



.

A. Triangular Eleme~ts

The triangular element shape functions are h](r,s), where the superscript

1 refers to ‘II ~,lementthis shape function represents and the subscript j re-

fers to the nodal point in the elemnt that this shape furlctton represents.

These shape functions are derived for triangular-shaped regicns with three to

SIX nodal points, The corner nodal points are required, whereas the miusic:~

nodal point% are optional. These triangular eleme!lts are used in pairs to

mcml quadrilateral regio?ls. Quadrilaterals cm tietormeu fron: triarigles irl

two ways: by placing the diagonal between nodal points 2 ancr4 (skwr, irl

Fig. 1), arlcIy blacinq the aiagnrl~l between nodal points 1 ~l,u3 (sho~rl ill

Fig. 2).

For tt,crorfiguratiori in wl,icllthk dlaqorlol is Iletwul.rl rlocldl pbintj 2 RIC

4 (Fig, 1) ttle element 1 shape functions are

.

h;m(l- r)(l - !,) (w (I , 11,

II



h~M-(r+s)(l+s)or O ,

$ = -(r + s)(! + r) or O , and

h~_(l+r)(l+s)or O . (z)

For a configuratii.m where the diagorlal is between noaal points 1 ar,a3 (as

shown In Fig. ?), the element 111 shape functions are

1,-..,



h~=(r-s)(l-r)or O ,

h~= (r- s)(l + s) or O , and

h:. (l- r)(l + s) nr O . (4)

(r,s) are natural coordinates that vary as

-lgr:l and-l <s<l .-.

The number of integration pofnts used for the triangular elements is eittler

one or three. These are listed fn Table 1. The single intecjration point is “][i.;1

exact integration for a lfnear approximation function, whereas the three int~-

gration points give exact Integration for a quadratic approximation function.

The criterion used for dividing the quadrilateral region into triar,gular

elements is the shortest diagclal. Thus if the distance between the nodal

pcirt 2 dr’dnc’dalpoint 4 is shorter than the distance bstwe~n noual Doirts 1

arc 3 then ttletriangular elements are I and 11 (as shown in Fig. 1). rc!rl-

versely, if tll~dlegondl di~tanc~ betwebn noual poirlts 1 arlu2 is tt”)es~lcrtust,

t!er tll(triangular ele:wnts are ]11 aridIV (Ls shown in Flq. 2). If tt,ethl

diagonal distances are the

and IV or avcrag~ all four

chcJILebrlps~ tile Plerwnts

sarilp, the user m~y specifj elemcr’ts 1 allcII or ii;

elements, Howev~r, av~raying all four 1s a PJLI!

are rectarlqle$.

Thus the QUA[4t elenlent consfsts of a quadrllatwal region kith nirler’c’cel

po~nts (show in Figs. 1 ar.d2), which consists of two six-nc,tial-p[irlttri-

angular elements. All midslde nodal points dre centered, and the ninth rl~’(iitl

point Is cent~red on the diagonal.

Consider a region to be analyzed. This region has many elements; son,r ar[’

in the Interior of the region to be analyzed, and some have boundaries that



are on the boundary of the region to be analyzed. The miasiae nodal points,

which are in the interior of the region being analyzed, are centered on

straight lines, whereas those midsiue nodal points on the boundary of the

region being analyzed are centered on the boundary, which may or may not be

curved.
L

B. Serendipity Element

The serendipity element shape functions are hj(r,s), where the subscript

j designates the nodal point that this shape function represents. This is a

four-to-nine-nod~l-point element. The co~sner nodes are required, but the

midside nodal points ana center nodal point are optional.

The numerical int+qration uwd for sereridiplty elW’rltS 1S discussed in Ful.

[7].

i



The QUAD8S element referred to In this paper consists of the first eight

nodal points shwn in Fig. 3 (h9 = O In Eq. (5)). The QUAD9S element

includes all the nodal points shown in Fig. 3 and all the terms in Eq. (5).

The location ot nodal point 9 is at

‘1 ‘X2
+x+x

‘5+X6+X7+X8
x9=-~+’~

Y1+Y2+Y3+Y4 Y5+Y6+Y7+Y~
y9.-~+~ .

This location is the location of r _ O, s = O using the first eight nodal

points in Eq. (5) (hg = O).

The midside nodal points are centered for both serendipity elements in th~

same manner as those discussed in the previous section. This region has many

elements; some are in the interior of the region to be analyzer.i,anc some t.a~e

boundaries that are on the boundary of the region to be analyzed. Those

rhidside noddl points that are in the Interior of the region being analjzeu are

centerec!on straight lirles,ana the midsid~ nodal points on th~ boundary of

tileregiml being analyzed are centered CIIthe bourldary, which n,dyor nay rlf.t

tlvCurlec.

Ii]. P1’Pkb)!l{LTIOl,FIIh[TIO1.5

Arlurldfrstarldir,gof ttluapproxlniatiwl fuhcticns tclrtridf$lilar drlc

serendipity elemulltswill clarify the resuits of tlw tw transversely loaueti

bt?aniprolllws discussed in Sec. IV.

?he shape furlctions dr’firl~din Se~. II are us~c to estdl,li~h ttletrafl!-

formaticm x(r,s) and y(r,s) frum the natural coordinate system (r,s) to th(

global coordinate system (x,y) afldalso for the approximation functions for

displacements (1 will use u(r,s) as a representative displacement). Idhenthu

same shape functions are used for boti! transforrdations and approxlmatiun

,1
\*

(6)

,.
:1



functions, the ~lements are isoparmetric. The shape functions definca in

Sec. II were derived to maintain a compatibility between elements for the

geometry (x,y) and displacement u. But what limitations do the resulting

approximation functions have?

To approximate a general function, I

series expansion, which suggests a polyno+m

would recommend using a Taylor’s

al series. The polynomial terms

should be complete to assure the same degree of approximation for each

possible deformation state (include all terms of the same degree). (See

Ref. [8] for a discussion of complete polynomials for finite elements. ) Thus

for two dimensions, the ideal approximations are

U(X,Y) = co + c1 x + C2 y ...(linear) and

U(x,y) = co + c1 x + C2 y + C3 X2 + C4 xy + C5 yz. ..(quadratic)

The approximation functions for triangular and serendipity elements will he

compared with Eq. (7).

A. Triangular Elcnlerlt

Iilwilvnt1 (showrlin Fiu, 4) has the following trFIr:\tC1rn:dtiLll tc,r x(r,s):

In Fig, 4,

+ x.‘1 /+a
‘:5= ~L— 5’

Thus

(&”)

(1(J)



Substituting the shape functions (Eq. (l)) into Eq. (10) gives

‘2 + ‘4

(

‘1-x2 +a+a

)(

xl-x4 +a+a
‘=~+r- 2 58+s2 58 )

2-r
a5 - ‘s (a5 + a8) - s2 a8 .

Similarly, y(r,s) is

Y2 + Y4

(

Y1 - Y2

)(

Y1
Y= ~ + r ~+

- Y4
bs+bs+s—~+bs+ ‘)~

)

- ~bs - ‘S(’5 + ‘d - ‘2 b~ “

Using the same six-nc)dal-point triangular shape functions (Eq. (l)) as

approximation functions for displacements,

~(r,s)=h~u, +h~u2+h~u4+h~u5+ h~ug+h~ug ,

(11)

(12)

( +u,
‘1 /+u +U+r _-

)(

U1+’J4+U+U
= U(.I L 5 k-”9+ s-~ L 5 k-”~

)

“l+”L-u

)( )(

+ u.
+ rs +s 2 ‘1 U-IJ[

~ 1 - U$ - U(;‘1 . + u~
)

. 1:;
.! 1

Mien the boundaries of the triangular elemerlt in Fig. 4 are straight ar:.

th~ n?idside noclal points are CP1’t6r~d, ttle6’s aridh’s are ztr[l dfILI X(I ,s),

y(r,s) in Eqs, (11) and (12) are linear functions of (r,s.). Thus ~her Eqs. (11)

anti (12) are substituted into Fq. (7), the displ~ccwl:t f’uflctiorof Eci.

(quadratic) ha! the sarl~pnlynonlial terms as Eq, (13), (onvers~ly, wtier

and b’s are riotzero, the lo~lndaries.are curved, or the midside nou~l pO

tll( L!’s

fits

are not cer,tered, and x(r,s) and y(r,s) in Eqs. (11) arid(12) are quadratic

functions of (r,s), Thus when Eqs. (11) and (12) are substituted intclEq. (7),

the displacement function (linear) has the same polynomial ter:ns as Eq. (13).



Summarizing, when the geometric boundaries are straight and the

nodal points are centered, the displacement approximation functions

quadratic in (x,y), but when the geometric boundaries are curved or

midsiue

are

the

midside nodal points are nrt centered, the displacement approximation

functions are linear in (x,y).

Three-nodal-point triangular elements have linear shape functions (see

Eq.(1)). Thus both the transformations x(r,s) and y(r,s) and the approYime-

tion functiorls u(r,s) are linear in (r,s). FrorrEq. (7) we car,see that the

approximation function is also linear.

B. S~rerldipity Element

Using the element in

In I“ic.5

h+~;”+a
Y[ = -—

f 1.’ ‘

TI,u:,

( IIL + “}
x = x 11 + --—

11 i

( II, + h
+x 1’

4 “4 + ~

Fig. 5, the transformation for x(r,s) is

(IL)

tlQ

)

+all +atl
‘r “5

() il + a7k’7 + ah”[”

‘~(a5+a6+a7+a8) 119 . (lb)



Substit~ting the shape function (Eo, (5)) into Eq. (16) gives

., , a,;a,)-rz(a~a,)+r,(xl-x,;xa-x~)(‘l+x2-x3 m-x4+

- ,2(%;9+ A(a,;a,)+A(+) . (17)

Similarly, y(r,s) is

I



When the boundaries of th~ serendipity element in Fig. 5 are straight aria

the mtdslce nodal points ars centered, the a’s ano b’s are zero and x(r,s),

y(r,s) in Eqs. (17) and (18) are

x(rOs)=po+p, r+p2 s+p3rs and

y(r,s)=qo+qlr+q?s+ q3rs .

‘l+’’’;*’: ‘1 ‘ ‘“ ~, ‘ ‘l,...----..... = ------ *t,l! ..... .. ● -----
i w1 t

or

P -x,. +x-x
:4 4

m [1 all[l
{ ‘1- VY:-Y 4=’; ‘

(,1)

I.()



Therefore x(r,s) and y(r,s) are linear.

X(r,S) = P. + PI r + p2 s and

y(r,s)=qo+q1r+q2s. (22)

When Eq. (23) is substituted Into Eq. (7), the displacement approximation

function of Eq. (7) (quadratic) has fewer terms than [q. (19). Thus, for a

parallelogram-shaped element, the displacement approximation function has

three terms more than are needed for a quadratic approximation in (xBy). The

(r2s), (rs2) and (r2s2) terms are not needed.

Surmcarizing, when the geometric shape of the serendipity element is a

parallelogram and the midside nodal points are centered, the displacement

approximation functions have three terms more than are needed for a quadratic

approximation in (x,y). Hhen the geometr ic boundaries are straight and the

midside nodal points are centered, the displacement approximatio~ functions

are auacjratic in (x,y). Hmever, when the geometric boundaries are curves or

th[: rridsid~ nodal pclints not centered, the displacement approxirration func-

tinr: havf ot[ torr more than is needed for a linear appro~irrat ior in (I,,b).

Xher, usinq tht. elerent in Fig. 50 If the ninth nodal point IS iqnprec, t)!

tra~$fomatims for x(r,s) aflc!y(r,s) are idrntical tu Eq\. (17) arlt!(“[:,.

If the eic~t-nodal-pcint s~rendipity shape fun~tions in [q, (S) art con-

Sidf,rr”: as apprc>if’ra!ion fuflctio~!,for Cisplacemprts, th( ninth n(,6al p~lrlt I:

aq:in iqnnrpd, and

■ ✎ ☞✎❞☞ rp++ ++‘1+ U7+U3+U4 ‘5+ U6+U7+U8



(‘1 + ‘2
+u7+u41J5+”7

)(

‘1-”2+”3-”4
‘~z~-~ ‘rs~ )

( +U+u+u
‘6 + ‘8

+s2\~-~ )(

‘1+”2-”3-”4
+ ‘2s ~

(‘1- U2-U3+U4 ‘6””8

)‘rsz ~+’~ “

‘7 - ‘5
‘-r- )

(24)

Again, the transformations x(r,s) and y(r, s) are the same for the eight-

and nine-nodal-point serendipity elements; however, the displacement approxira-

tior functions are different. Thus when th~ boundaries of the serendipity

elerent are straight and the rr~!!~idenodal points are centered, t% atS ~nti

b’s are zero, and the transformation< for x(r,s) ant!,y(r,s) are Eq. (?C).

However, wher [q. (?0) is substituted into Eq, (7), the displacement function

of Ec. (~) (Qi~a~ratic) has a fourth-degree term t$at Eq. (?~) does net hav~.

Conv,’r:.elv,wher a’s and b’s are not zero, the bou~daries are not straight clr

the r’id:.idf ncIdal pcints are net certerea, ant)x(r,s) and y(r,s) in Eqs. (17)

and (l:) hav~ all the quadratic terms and two third-degree pol.ynorials iderl-

tlc~l tf th, QLA:)!IL elerf’t. lie~fve?-,whtr Eqs, (17) and (1/) are sutstitutt:,

ir!f [c, [;), thf di:,:la:t [r! f~nr!ior. (linear) ha! the sart polyrlo::ial ttrrl~,

a:, [q, 1::,,

A!, :~~f”t f(:! ttlt Q:;.:’”, Plf?m”t, th~ pll!dllf,l(lgran-s~idp(-’ ~lwfft r[:,(jl!:)

*j(r, f~w x(r,s), v(r,s).ill{jlln~.~vtral’?rrre, Thi,s [Q. (;L) hd: tw!~terf~~.

approxtr(ation functio~:l have two tttms more than are needed for a quodratic

appro~lmation tn (x,y), kJhtItIthe geom~tlc +oundartes are straigllc and th(’

r



midside nodal points are centered,

lack the fourth-degree term (r2s2)

geometric boundaries are curved or

the displacement approximation functions

to be quadratic in (x,y), but when the

the midside nodal points are not centereJ,

the displacement approximation functions are linear in (x,y).

For a four-nodal-point element, the transformation equations x(r,s) anti

y(r,s) are identical to Eq. (?0) for a skewea-shaped element arid iderltical tc,

Eq. (23) for a parallelogram-shaped element. Using the four-nodal-point

serendipity sl,apefunctions in Eq. (5) for approximation furlcticms for

displacements u(r,s),

4
u=~hu

i=l i i

‘1
+U,+u+u

(

‘1- U2-U3+U4

)“~+r—~ ‘s ( +u. - u - u

~
)

((m,

of [Q. (7) (

Lunlrqri?

element is a

in (xoy) plus af) (rs) term. Mhen the shape in shew~d, the approximatiw

function is linear in (x,y), The element approximation functions are listed

in lal)le 11.



IV. APPLICATIONS

In this sectiorl 1 wi’

a cantilevered beaml, and

1 present three beam problems: a ‘ongitudinbl b~df,,

a ci~cular beam. Each problem has been analyzed wit~

the three elements defined in Sec. 11.

The longitudinal beam problem has linear displacements and was solved

exactly by all three elenw’nts independerlt of whether their s~lap~~were rect-

angular or skewed. However, my original intent was to use the same integra-

tion fc,r@l!AP9t as 1 did for the serendi~ity elements. Ttis was s~tisfactor~

for th~ other two beam problems, but the calculation usiny the QUICWt elwrIertI

gave war’inaless arlskers for this r:oble~ountil a tria’lgular integretic)rlsclt-f~

was developed for this element, This integration scheme is docurr,erltedin

sec. 11.

The caf tlleverea bean, protlen, is iatntical to tht problcrr,US6C t,, lr~fu~:,[r

Stricl.lallc,et al., in Ref. [4] Pxcept that the rrlaterial properties, loaa~, aflc

slzp’,I,dv( ;,etraiv~llnlctric values. Illisprol)l~n is illu<trdteu in Fit, 6,

a!rjth,,tl,~c,r~tlcaland c~l~ulatefl results ~r~ tal;l,lateain Tatlr 111.

frol Ill r~fr;vaticlr’. ir W, 111, w( (all itlttrpet ttl:’l(rv!hlt$, I(II Itl,

cas( htlt,rp ttl( quatrilatrral elwtntm Lrp rbc!arlgulart tllf ar;r[’>ira!l~~r

furlct i(,r ‘ art, qu(lcrtitir. JIIL,j arlt:ltl~lrldl tfrrr:. for ttlv <[rfucii it~ f l,:fw f 1’$

with u,:l,l’?c. tldvin(; [lrlf morp tprr?l than ~llAII{.~,, ?II[,[:’~[~itIii’.id(,ftltfll

clualr?,tif.ai~rflyinfitlfjr’ , l)IIIC, [!uhp9~, uiv~.’l tll~ Ile!,tr~!.illt~, L\;.:l Ls tll(

Sc,cor,rj t)p:,t rf-!,lllt~, arfl [:11/. [I!t qives tllvthird l)tl~tr~s~~lt:.;t:uhl’~(’r, tilt-’.(

results hdvp ~Fl!,:, t)lan J.\I’ ~rror, ]ndvlwtldltlt of what prollw IS sul~w, if

the quadrilatrval~ are parallel ngraflls,thr QllA[l!Js~lemetlt will approximate t~l~

solution bettfr that or as well as the QU~~i’1$~lenlel~t;aridtileQllAO&is elem(flt

will approximate the solution better that]or as well as the C/UAD9t element,



For the case where the quadrilateral elements are skewed, the QUAC.)8Sapproxinlfi-

tion functions are lacking a term to be able to approximate quadratic func.

tions. Also, the region for approximation is large; thus the calculated

results are very stiff. The QUAD9S element does have quadratic approximation

capability, but its region for approximation is also large compared with the

QUAD9t element, which breaks each quadrilateral region into two triangular

regions ~ach with quadratic approximation capability. Thus, when the q~adri-

lateral elements hav~ skewed shapes, the QlJAD9t elements are good, the QUACJ9S

elements are poor, and the QUAD8S elements are very poor. lndepena~nt of w)lat

problem is being solved, if the quadrilaterals are skewed geometry, the QIW,LNt

elerrlerltwill approximate the solution better than or as well as the GUAD9S

element, and the QUAD9S element will approximate the solution better than ~}r

as well as the QUAD&{s element.

The circular beam problenl is illustrat~~l in Fig, 7, and the theoretical

aridcalculated results are tabulated in rable IV, Th.+horizontal displaceuleflt

is used as a qiiuqe of the solution be~ause it is proportiurl~l to the puter’tifil

energy of the problem. This prol)lemwas chc~sen l)ec&lJseit i, ~lr?:ilarin tlli(l-

ness, l~rlgth, mat~rial properties, and loaas to the (,arltil(lvere(!IWUIT,p!ul,lt:l:..

1 studied this problem to better understarrd curved boundaries, A LtIeLhc~fttli

thec}r~ ticalsnlution of t}lisproblem arlcllh~ previous proliltllfllo~$ ttl,llII,(’

cfispl~cem(~ntsto he apprnximat~d are sinlililr[q], Howev~r, it requir~w six

qlld~rilat~’ral~lwwnts tc]yet,as much ac[ura~y for this prolll~w,ds thdt

obtained with the previous prol)lenlwith only three elPmf’ntS, This confirlli>

the loker d~qreu apllrOXimati(Jnfuncttons for displacements wlieIIthe l~uufld~rit’%

are curved; this was discussed in Sec. 111, Also, for this problem, the (JuAl191,

elements are not as much better than the QUAD8S elements as they were irIth~’

previous problem, This Is because the C)UADflSelement has a linear approxim~tfon



function for curved boundaries and the QUAD9S element had the same, with one

additional term. Again, the QUAD9t element is much better than the other tw~

elements because the region it approximates with its linear approximation

function is much smaller than that of the other two elements.

v. CONCLUSIONS AND RECOMhiENDATIOhJS

From the definitions in SPL, 11, th~ derivations in Sec. 111, and the

problems in Sec. IV, I conclude the following.

(1) Whenever element$ are rectangul ar-silaped or uniformly curved (didy -

onals are equal), the QUAD&s element should be used. The QLL4L4s element is

more accurate for these elermnt shapes; however, the ninth nodal puint is of

mirimal Importance for these elements, and the effici~ncy gained by dropping a

nocdl point is wGrth it.

(2) All other element shapes shoulc use the QUAD9t element.

Ideally, these elemerlts could be designated with a mesh generator, It

shol,ldmpsh as met? of th( recri(,n to h~ ar,alyzeci , pos~itle usirlgrectargulOr

elernr’ntswith eiqllt nodal poirts for tll!LPFselem~nts, The rest of the reqic”

Stl(blq I!p rY1/ ~,~,(.!: hith r’irlf -n(!fl?l-poir’t quadrilaterals for L!;i.:l:t f~l~m(l,ts,

ThFsF (’llA[’Ytelbw’r,ts should h~v~ straiqt,t boundaries unles,~ straiglit LIc,u!c-

ari~”,siarlifi~a~tly cllar:u~thl U6UmItry of tileregiotl; ttlertllt~jst)tl,,l:It

curv~d, Wlr,rcurve~! boundaries arc user], ?IIP arlaly:t SIIPU1(I rpmpcl I r tt,dt ttll

accurac.~ of ttlf” dp; roxinl~lillr’furctiurls is redbctc.

1 wc)uld 1iie tu fmlpllasizcttlatwh(n tll(:~uhialler-dt’prrtelt’pltII

it is very tmportant t[l cf:rltvr th( n’id5im ncmal poirlts, The re:.b

lated for th~ bean problems in Ssc, 1’;would be much less accurate

slde nodal pclintswere moved even a small amount. This implies a special

handling of the midside nodal points for Eulerian-(updated Lagrangian) type

finite element norllinear geometric programs.
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TABLE I

Triangle

1

1

1

1

2

2

2

2

3

3

2

3

4

4

4

4

INTEGRATION FOR TRIANGULAR ELEMENTS

integration
Element

3

3

1

3

3

3

1

3
2.

3

1

3

3

3

r-.

1/3

2/3

2/3

-1/3

-1/3

-2/3

-2/3

1/3

-1/3

-2/3

-2/3

1/3

1/3

2/3

2/3

-1/3

s

1/3

2/3

-1/3

2/3

-1./3

-2/3

1/3

-2/3

1/3

2/3

-1/3

2/3

-1/3

-2/3

1/3

-?/3

Meightirig
Factor

2

2/3

2/3

2/3

?

2/3

2/3

2/3
F,L

2/3

2/3

2/3

2

2/3

?/3

?/3



Element and
Number of Nodal Points

Triangular

3

6

6

Serendipity

4

4

E!

e

6

9

9

a

TABLE II

ELEMENT APPROXIMATION FUNCTIONS

WEa

Triangle

Triangle

Curved boundaries

Parallelogram

Skewed

Parallelograrr

Skewed

Curved boundaries

Parallelogram

Skewed

Curved boundaries

Approximation Functior,b

Lin~ar

Quadratic

Linear

Lin~ar + 1

Linear

Quadratic + 2

Linear + 4

Linear

Ouadratic + 3

Quadratic

Linear + 1



TABLE 111

PLANE STRESS CANTILEVERED BFAM ~]TH TRANSVERSE LOADa

Element

%

QUAD5S

QIJAD?s

QUAD9t

QLAD2s

QUAi19s

QIJAWS

Theoretical

Element

=

Rectangular

Rectangular

Rectangular

Vertical Tip Deflection
% Error Meters

3.10 .03F76

1. 5E .03937

3.36 .03e65

56.03 .01759

16.90 .CJ3324

4.3.5 .C3E25

o .040G



TABLE IV

PLANE STRESS CIRCIJLAR BEAK WITH TRANSVERSE LOADa

Element

J!F!L

QUADSS

QUAWS

QUA;’9t

Theoretical

Element

m

Uniform

Uniform

Uniform

Skehed

Skewed

Skewec

Horizontal Tip Deflection
% Error Meters

2.48 .02380

1.99 .02352

1.42 .02406

2?. 56 .01s50

15.39 .02065

3.14 .02364

0 .o?4~l

a
Lee Fig. 7



FIGURES

Fig. 1. A q~adrilateral elenvnt compose~ of tw tri~r,q~l~r elcnerlts (~icc,,rCl

between nodal prints 2 arlc4).

Fig. 2. A quadrilateral ~lerrn-ntcomposed of twr ttianG,,lzrelenwrts (aiasr,r~l

between nodal points 1 and 1).

Fig. 3. A quadrilateral serendipity ~lemnt.

Fiq. 4. El~tnent I with twclcurved Boundaries..

Fig. 5. Nine-rwddl point Sererldipit.v ~lw,~rt witl, cur~~,: bc,~rc,~~1~:.

Fig. 6. plr3ne Str~SS carltil~verea bean’ prc)t,len (see Pef. [4]).

Fig, 7. Pla!’eLtre!s circu?dr twdrlprcrl,ltrr.



NCWENCLLTURE

a-

b-

c-

E-

h-

P-

P-

u-

r-

s-

b-

x-coordinate distance of midsiue nodal pnint from the center point (see

Figs. 4 and 5)

y-coordinat? distance of mlclsiac nodal point from the cer,ter point (sc~

Figs. 4 and 5)

constart coefficients u5efI in [q. (7)

Vouna’s morlulus (material property)

elfmfrt shape furlctiolls

ccmtar’t coefficients used in [qs. (2L) and (23)

pres,!k,relc~ac

rr)l’!,tart cili ffi~.iPr-tS USC;l] ih ~q!,. (?(;} afrfi (pj)

ri~tL;r-el ccmrr!:rates u:,ed irielemrlt description (SW Figs, 1 ar,ci)

nfit!.r?l t[l[lrdirldtu!. u~~c \II flfm~(rt ch’.cri~jtiur, (st.~ Figs. 1 arlu ; )

a ci~r la~emr,r:t; u rt”~,rpsc.fits ttw dl<~l~lw,$’~ ts in thp x ant: y Coor’ci!,fitv

clr~l(: II !.

cdr!t’li;,r illlrc.~,:?t lLII Iiqc., 1 arf: , )

1;:1;1 r,l,?! [rlf.r,:i?l;lti 1<1.I F 10’, . I arc , j

l), 1. W<llr r+tl (P.l,t)rim:l lIrIIIItIf[\~
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p=~o.0N/m2
E=106N/m2

v = O*3
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